

Гидролиз солей

Теоретический материал

- К электролитам относят: кислоты, соли и основания
- Гидролиз обменная реакция солей с водой, или разложение веществ под действием воды
- 3 Сильные электролиты:
 - Все растворимые в воде соли (пользуемся таблицей растворимости)
 - Все щелочи (основания активных Ме-Ме IA и IIA групп, кроме Ве и Мg)
 - Некоторые кислоты: HCI, HBr, HI, H₂SO₄, HNO₃, HCIO₃, HCIO₄, HMnO₄, H₂CrO₄, H₂Cr₂O₇

Все остальные электролиты – слабые

Нужно помнить!

Гидролизу не подвергаются соли:

- нерастворимые в воде (используем таблицу растворимости)
- образованные сильным основанием и сильной кислотой

В этих случаях среда раствора не меняется (остается нейтральной)!

Если соль гидролизу подвергается, то среда может меняться или оставаться нейтральной. Гидролизу подвергаются соли, в состав которых входит частица слабого электролита. Это соли, образованные:

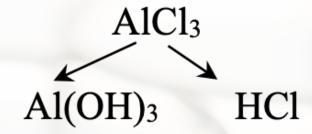
слабым основанием и сильной кислотой => среда кислая

ЗАПОМНИТЬ!

- Растворы сильных кислот имеют сильнокислую среду, а слабых слабокислую среду
- Растворы щелочей имеют сильнощелочную среду
- Раствор аммиака имеет слабощелочную среду
- При определении среды растворов солей используем правило: какой электролит сильный- такая и среда раствора! Среда за счет гидролиза солей может быть только слабокислой или слабощелочной! Если оба электролита сильные или оба- слабые, то среда нейтральная!

ЗАПОМНИТЬ!

Na₂SO₄ NaOH H₂SO₄


сильный сильный => среда нейтральная

 $Al_2(CO_3)_3$ $Al(OH)_3$ H_2CO_3

слабый слабый => среда нейтральная K_2SiO_3

KOH H₂SiO₃

сильный слабый => среда слабощелочная

слабый сильный => среда слабокислая

Для кислых солей среда раствора определяется так же, как и для средних солей:

NaHCO₃
NaOH H₂CO₃

сильный слабый => среда слабо щелочная Na₂HPO₄

NaOH H₃PO₄

сильный слабый => среда слабощелочная

Запомнить исключения!

NaH₂PO₄ и KH₂PO₄

NaHSO₄ и KHSO₄

NaHSO₃ и KHSO₃

среда слабокислая!

Практическое применение

Алгоритм выполнения и примеры задания линии 21 ЕГЭ

- Внимательно изучить формулы веществ, приведенных в задании, или грамотно составить химические формулы веществ по названиям, указанным в условии
- 2 Найти формулы кислот, оснований и солей
- Определить силу кислот и щелочей, приведенных в задании
- Определить силу кислот и оснований, входящих в состав указанных в условии задания солей
- Определить среду в растворах указанных электролитов и расположить их формулы на приведенной в условии задания шкале
- Записать в бланк ответов последовательность, соответствующую увеличению или уменьшению рН растворов согласно условию задания

Пример:

Для веществ, приведенных в перечне, определите характер среды их водных растворов

 $2n(NO_3)_2$

 $CaBr_2$

2 CsOH

4 K₃PO₄

Запишите номера веществ в порядке возрастания значения рН их водных растворов, учитывая, что концентрация веществ во всех растворах (моль/л) одинаковая.

Шкала рН водных растворов электролитов

Ответ:

2